Left Termination of the query pattern
p_in_2(g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
p(X, g(X)).
p(X, f(X)) :- p(X, g(Y)).
Queries:
p(g,a).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,f) (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, g(X)) → p_out_ga(X, g(X))
p_in_ga(X, f(X)) → U1_ga(X, p_in_gg(X, g(Y)))
p_in_gg(X, g(X)) → p_out_gg(X, g(X))
p_in_gg(X, f(X)) → U1_gg(X, p_in_gg(X, g(Y)))
U1_gg(X, p_out_gg(X, g(Y))) → p_out_gg(X, f(X))
U1_ga(X, p_out_gg(X, g(Y))) → p_out_ga(X, f(X))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2) = U1_ga(x1, x2)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
g(x1) = g
p_out_gg(x1, x2) = p_out_gg
f(x1) = f(x1)
U1_gg(x1, x2) = U1_gg(x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, g(X)) → p_out_ga(X, g(X))
p_in_ga(X, f(X)) → U1_ga(X, p_in_gg(X, g(Y)))
p_in_gg(X, g(X)) → p_out_gg(X, g(X))
p_in_gg(X, f(X)) → U1_gg(X, p_in_gg(X, g(Y)))
U1_gg(X, p_out_gg(X, g(Y))) → p_out_gg(X, f(X))
U1_ga(X, p_out_gg(X, g(Y))) → p_out_ga(X, f(X))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2) = U1_ga(x1, x2)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
g(x1) = g
p_out_gg(x1, x2) = p_out_gg
f(x1) = f(x1)
U1_gg(x1, x2) = U1_gg(x2)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(X, f(X)) → U1_GA(X, p_in_gg(X, g(Y)))
P_IN_GA(X, f(X)) → P_IN_GG(X, g(Y))
P_IN_GG(X, f(X)) → U1_GG(X, p_in_gg(X, g(Y)))
P_IN_GG(X, f(X)) → P_IN_GG(X, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, g(X)) → p_out_ga(X, g(X))
p_in_ga(X, f(X)) → U1_ga(X, p_in_gg(X, g(Y)))
p_in_gg(X, g(X)) → p_out_gg(X, g(X))
p_in_gg(X, f(X)) → U1_gg(X, p_in_gg(X, g(Y)))
U1_gg(X, p_out_gg(X, g(Y))) → p_out_gg(X, f(X))
U1_ga(X, p_out_gg(X, g(Y))) → p_out_ga(X, f(X))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2) = U1_ga(x1, x2)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
g(x1) = g
p_out_gg(x1, x2) = p_out_gg
f(x1) = f(x1)
U1_gg(x1, x2) = U1_gg(x2)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2) = U1_GA(x1, x2)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U1_GG(x1, x2) = U1_GG(x2)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(X, f(X)) → U1_GA(X, p_in_gg(X, g(Y)))
P_IN_GA(X, f(X)) → P_IN_GG(X, g(Y))
P_IN_GG(X, f(X)) → U1_GG(X, p_in_gg(X, g(Y)))
P_IN_GG(X, f(X)) → P_IN_GG(X, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, g(X)) → p_out_ga(X, g(X))
p_in_ga(X, f(X)) → U1_ga(X, p_in_gg(X, g(Y)))
p_in_gg(X, g(X)) → p_out_gg(X, g(X))
p_in_gg(X, f(X)) → U1_gg(X, p_in_gg(X, g(Y)))
U1_gg(X, p_out_gg(X, g(Y))) → p_out_gg(X, f(X))
U1_ga(X, p_out_gg(X, g(Y))) → p_out_ga(X, f(X))
The argument filtering Pi contains the following mapping:
p_in_ga(x1, x2) = p_in_ga(x1)
p_out_ga(x1, x2) = p_out_ga(x2)
U1_ga(x1, x2) = U1_ga(x1, x2)
p_in_gg(x1, x2) = p_in_gg(x1, x2)
g(x1) = g
p_out_gg(x1, x2) = p_out_gg
f(x1) = f(x1)
U1_gg(x1, x2) = U1_gg(x2)
P_IN_GA(x1, x2) = P_IN_GA(x1)
U1_GA(x1, x2) = U1_GA(x1, x2)
P_IN_GG(x1, x2) = P_IN_GG(x1, x2)
U1_GG(x1, x2) = U1_GG(x2)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 0 SCCs with 4 less nodes.